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Abstract

First we recall the assumptions that are needed for the validity of the Boltz-
mann equation and for the validity of the compressible Euler equations. We then
present the difference formulation of these equations and make a connection with
the time-honored Chapman - Enskog expansion. We discuss the hydrodynamic limit
and calculate the thermal conductivity of a monatomic gas, using a simplified ap-
proximation for the collision term. Our formulation is more consistent and simpler
than the traditional derivation.

Key words:

1 Introduction

The Boltzmann equation is based on a picture of N point-like particles. They
evolve in time by Newton’s equations and they interact with each other. In
the “particle” picture, in 3D space, they are characterized by a distribution
function in 6N dimensions. There is an intermediate stage of the Boltzmann
equation, in terms of the single particle density in 6 dimensional phase space
(coordinates and velocities). This is usually called a “kinetic” or mesoscopic
picture. The kinetic picture is valid if two basic conditions are met: the in-
teraction range of the particles is small with respect to their mean free path;
and the particles entering a collision have random directions and velocities.
These assumptions ensure that three-body and higher correlations can be ne-
glected. Therefore dense fluids and boundary layers within the mean free path
are explicitly excluded.

By ”straightforward” theory in the low Knudsen number limit (Kn = the ratio
of the effective range of the collisions to the mean free path), the compressible
Euler equations are obtained, but the equation of state is always that of an
ideal gas.
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Hydrodynamics is based on a picture of continuous matter. At each point
there is a density and a velocity vector with no accounting for the distribution
of molecular velocities. Hydrodynamics breaks down in the vicinity of shock
waves and fluid boundaries and it has to use phenomenological transport co-
efficients. Also, it does not include fluctuations in the parameters.

In this paper we do a simple transformation of the Boltzmann equation. We
split the single particle density in space and velocity, f(r,v, t), into a sum of
a Maxwellian velocity distribution at each point in space and a “difference”
velocity distribution - in a manner similar to the difference formulation of
radiation transport [1]. The Maxwell part satisfies equations that are similar
to the hydrodynamic equations and it is a source for the difference term.

From our work on radiation transport we know that in optically thick regions
the radiation approaches Planckian and the difference field gets very small. We
expect that in regions where the gradients are small the difference distribu-
tion will also get small (after some relaxation time). In fact, in our experience
with real-life radiation transport problems, it has become clear that in opti-
cally thick media the difference formulation of radiation transport produces
the same result as the diffusion equation. Furthermore, it always satisfies the
correct boundary conditions, provided the discretization in space and time is
done properly.

There are recent papers on treating some parts of fluids and gases by the
Boltzmann equations and other parts by hydrodynamics [2],[3]. In these ap-
proaches there are difficulties in establishing consistent boundary conditions
at the interface between the particle and hydrodynamic treatments. We hope
that the new formalism will improve these calculations. It should also provide
a significant speedup of them. Other hopes are that one can seamlessly cou-
ple molecular dynamics with a continuum description of diffusion phenomena.
We also hope that our work will point to a new, and more consistent way
of deriving transport coefficients. We also hope that someone will extend the
treatment to non-ideal fluids.

2 Background

In this section, we present a very brief review of the background material for
the rest of the paper. Our derivation is similar to that of Esposito, Lebowitz
and Marra (ELM) [4], but we use some of the notation of Liboff (LIB) [5]. It
sets the stage for the next section where, inspired by the difference formulation
of radiation transport [1], we separate the “mesoscopic” Boltzmann kinetic
equation into a local Maxwellian velocity distribution and a deviation.
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We use f(r,v, t) for the time-dependent six-dimensional particle density. We
will call it the local velocity distribution function of the particles. We denote
by M(r,v, t) the local Maxwell distribution and use F(r, t) for the volume
force.

The Boltzmann equation (ELM 1.1), (LIB 3.2.14) for the distribution function
is

∂f(r,v, t)

∂t
+ v · ∇xf + F · ∇vf = Q(f, f) (1)

Q(f, f) is the collision operator. The two gradients, ∇x and ∇v are those in
real and velocity space.

We will use a component notation. We use i, j, k for any three orthogonal
components of space and velocity. We also use the Einstein convention of
summation over repeated indices. The Boltzmann equation becomes

∂f(r,v, t)

∂t
+ vj

∂f

∂xj
+ Fj

∂f

∂vj
= Q(f, f) (2)

The equation assumes homogeneity of the one-particle distribution function
over the collision volume, molecular chaos of the incoming particles, no multi-
ple collisions and no second order correlations of f(r,v, t). These assumptions
have been discussed widely in the literature. We do not want to contribute
to the discussion; we agree with everybody, even if some of them seem to
contradict one another.

There are “collisional invariants” of the collision operator. These are con-
sequences of the fact that individual elastic collisions of point-like particles
conserve the number of particles as well as energy and momentum. Consider
two distributions, f(v), g(v) of one particle velocity. Their evolution by col-
lisions is given by Q(f, g). If a quantity ψ(v) is a collisional invariant, i.e. it
is not changed by collisions, the integral of Q(f, g) over a conserved ψ(v) has
to vanish. This is expressed as∫

Q(f, g)ψ(v)dv = 0 (3)

Here dv = dvidvjdvk is the product of (any) three orthogonal spatial compo-
nents of the velocity.

Now we write down the local conservation laws. They are not the hydrody-
namic equations, but they are similar to them. First we define the number
density, n, and the momentum density (divided by the particle mass m), nu,
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where u is the local average velocity. The pressure tensor (divided by m) is
Pij, and the kinetic energy density (divided by m) is nek; they are all defined
in terms of the local distribution function f(r,v, t). The spatial and time
coordinates are understood implicitly.

n =
∫
f(v)dv (4)

nu =
∫

vf(v)dv (5)

nPij =
∫
f(v)(v − u)i(v − u)jdv

=
∫
f(v)(c)i(c)jdc =

∫
f(v)cicjdc (6)

nek = 1/2
∫
f(v)|v|2dv (7)

Here u is the average (or macroscopic) velocity and c is relative velocity

c = v − u (8)

We also define the heat flux vector (that include both the convective and the
diffusive heat flux)

q = 1/2
∫
f(v)|v|2vdv (9)

The three collisional invariants are ψ(v) = 1, v and |v|2/2. They express the
local conservation of matter, momentum and energy. Using them in Eq. (3)
we get the conservation equations for the space and time dependence of the
local number density, the local velocity and the local kinetic energy. Here ⊗
denotes the tensor product.

∂n

∂t
+∇x · nu = 0 (10)

∂nu

∂t
+∇x · n(u⊗ u + P) = nF (11)

∂nek
∂t

+∇x · q = nF · u (12)
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In component notation they are

∂n

∂t
+
∂nuj
∂xj

= 0 (13)

∂nui
∂t

+
∂

∂xj
[n(uiuj + Pij)] = nFi (14)

∂nek
∂t

+
∂qj

∂xj
= nFjuj (15)

The Euler equations of hydrodynamics can be obtained from Eq. (13) - (15)
by multiplying them by the mass of a particle, m, using ρ = nm and adding
in the internal energy, εmat, and the specific enthalpy or heat function w, of
the matter.

∂ρ

∂t
+∇x · ρu = 0 (16)

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = ρF (17)

∂

∂t
(εmat +

1

2
ρu2) +∇ · (ρuw +

1

2
ρuu2) = ρF · u (18)

The hydrodynamic equations are written for a continuum and they are valid
only on much longer spatial scales and time scales than the collisions. The
Navier - Stokes equations have added viscosity terms. In addition, there are
fluctuations in fluids that are not described by the Navier - Stokes equations.
The difficulty in establishing the hydrodynamic limit of the Boltzmann equa-
tions stems from the fact that in order to calculate the stress tensor, p = mP
and the viscosity, one has to “close” the Boltzmann equation hierarchy. The
traditional way of doing this is an expansion in terms of the (small) ratio of
the collision range, l = (1/n)1/3, to the length, L, of the reciprocals of the
typical gradients. This is the Knudsen number, Kn = l/L.

At this point we want to discuss entropy generation, i.e. Boltzmann’s H the-
orem. We refer to Villani’s treatise [6]. The collision operator, Q(f, f), for
energy and momentum conserving collisions has the form

Q(f, f) =
∫
dv∗

∫
dσB(v − v∗, σ)(f ′f ′∗ − ff∗) (19)

In this equation v,v∗ are the incoming particle velocities, and v′,v′∗ are the
outgoing particle velocities and similarly f, f∗ and f ′, f ′∗ are the incoming
and outgoing particle distributions respectively. The angular deviation of the
relative velocities on a collision is σ.
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The notation in this equation is somewhat opaque. For later use and for some
clarity we will write down a more general collision operator, similar to Eq.
(3), but valid for the collisions of two different species. We define the binary
collision operator as

Q(gb, fa) =
∫
dvb

∫
dσB(nava − nbvb, σ)(g′bf

′
a − gbfa) (20)

Here a, b are two species of colliders, na, nb can be thought of as their masses
expressed as number densities . The expression Q(gb, fa) is the rate of change
of an a particle by collisions with all b particles having the velocity distribu-
tion gb. In the collision the a particle has a momentum nava. It collides with
a b particle of momentum nbvb and the momentum difference is rotated by
σ, that is a momentum transfer vector. Because collisions conserve the num-
ber of particles as well as total momentum and energy, the vector σ uniquely
defines the outgoing momenta nav

′
a, nbv

′
b. The collisions result in a loss for

fa(va), so they contribute a negative term. The positive term comes from the
reverse collisions, where particles with the outgoing momenta collide to pro-
duce particles with the original momenta. By the reversibility of the equations
of motion, they have the same probability. The inner integral is over the mo-
mentum transfer, σ and the outer integral is over all the possible velocities of
the collider, vb.

The Boltzmann H function, the negative of the entropy of the distribution, is

H(f) =
∫
dvflogf (21)

As f evolves, H decreases in time (the entropy of the distribution increases in
time.) The dissipation rate of H is given by

d(f) =
1

4

∫
dvdv∗dσB(v − v∗, σ)(f ′f ′∗ − ff∗)log

f ′f ′∗
ff∗
≥ 0 (22)

An important corollary is that the dissipation of H vanishes if and only if the
distribution is the “local” Maxwell - Boltzmann distribution,

M(c) =
n

(2πRT )3/2
exp(− |c|

2

2RT
) (23)

Here R = k/m and n, as well as RT , are space and time dependent. Explicitly,
M ≡M(r, c, t;n,u, RT ).
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3 The Boltzmann equation in the difference form

The next step has its motivation in the work of Szoke and Brooks [1] on
radiation transport. It was observed that in optically thick media (far from
boundaries and transients), the radiation is close to thermal. In other words,
the emission and absorption of radiation are two large quantities that almost
cancel each other while their difference is comparatively small. Following this
hint, the radiation intensity was decomposed into a sum of the local black
body (Planckian) distribution and a (space, frequency, and time-dependent)
local deviation from it. When the radiation intensity is written as a sum of
the local Planckian and the deviation field, the propagation operator in the
transport equation acts on the deviation field alone, while the space-time
variation of the local Planckian becomes the source of the deviation field.
As the deviation of the local intensity from the Planckian becomes small in
thick media far from boundaries, modeling the difference field has obvious
advantages for Monte Carlo calculations. We called the result the “difference
formulation” of radiation transport.

Similarly, in regimes where collisions dominate and where gradients of the
parameters are small, the distribution function, f(r,v, t), gets close to a
Maxwellian. This is the hydrodynamic regime. Although the collisions are the
dominant term, “forward” and “reverse” collisions almost cancel and their
net effect becomes small. As in radiation transport, the spatial and temporal
changes in the local Maxwell distribution become the source of the deviations
of f(r,v, t) from a Maxwellian and they are the terms that contribute to the
transport of particles, momentum and energy.

The rest of the paper is devoted to the development and discussion of this pic-
ture. We formally decompose the distribution function f into a local Maxwellian
and a difference velocity distribution

f = M +D (24)

The variables are to be understood.

Substituting into Eq. (1), we get the “difference Boltzmann equation”

∂D

∂t
+ v · ∇xD + F · ∇vD=Q(M,D) +Q(D,M) +Q(D,D)

− ∂M
∂t
− v · ∇xM − F · ∇vM. (25)

Note that Q(M,M) = 0.
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This innocuous looking transformation is the main innovation in our approach.
It introduces a new point of view. The derivatives of the local Maxwell distri-
butions are the sources of the difference distribution, i.e. the deviation of the
distribution from Maxwellian. These gradients are the deviations from global
equilibrium. So, in global equilibrium the difference field vanishes. The left
hand side of the equation and the collision terms describe the evolution of the
difference field.

Six remarks are in order. First, the decomposition is exact, it is not pertur-
bative. An important new property of the difference distribution, D, is that
it can have positive and negative parts, while f is always non-negative. From
the non-negativity of f it follows that D is bounded from below, D ≥ −f for
all velocities and everywhere. The D particles are true “negative particles”:
they have negative mass, negative energy and they carry negative momen-
tum. The connection with perturbation theory is that choosing a “good” set
of parameters for M , makes D “small”. Second, the derivative terms on the
right hand side are the sources for the difference density. They are very sim-
ilar to the “new” sources in the difference formulation of radiation transport
[1]. Third, in the relaxation approximation (that should be used very spar-
ingly - as we will show below) our difference equation (25) is identical to
the difference equations of radiative transport. The main difference between
the Boltzmann equation and the radiation transport equation is that photons
are not conserved but particles are. Fourth, if the Knudsen number is small,
Kn = ε << 1, we expect that Q(M,D) ≈ ε and Q(D,D) ≈ ε2. Fifth, we note
that the approach to local equilibrium is dominated by the Q(M,D) term. To
calculate the steady state fluctuations the Q(D,D) term has to be included.
Sixth, the source terms have a tensorial character in velocity. As M has an
angular distribution of the spherical harmonic P0, the sources for D are at
most P2. This fact has important implications. A generalization that works
in radiation transport is to use a more general “reference field”. As long as
the reference field has a P0 character in velocity, the sources for D are still at
most of P2 character in velocity.

At this point the Maxwellian can have an arbitrary set of parameters. Note
from Eq. (23) that the distribution is characterized by five parameters: n, u
and RT . As mentioned above, one of the central tasks will be to find “optimal”
values of these parameters in order to minimize D in some sense. In fact, the
equations for the conservation of mass, momentum, and energy determine the
evolution of those parameters in space and time. The result will be a set of
equations for the parameters that lead to generalizations of the Euler equations
above.
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Equation (25) has the general form

dD

dt
=
dD

dt

∣∣∣∣∣
coll

+
dD

dt

∣∣∣∣∣
source

. (26)

The constraint of non-negativity on f demands that the particles emitted by
the sources can not be more negative than the local Maxwellian at any velocity.
We also note that if D emitted by the sources does satisfy the positivity
constraint, (M + D) ≥ 0, during its propagation the same sources add the
right amount to it that M +D stays non-negative.

We will now develop the equations for the sources and the propagation of D;
then we develop the collision operators Q(M,D); and then we write down
the conservation equations that D has to satisfy. The set of six equations are
needed for the solution of an initial value problem.

3.1 The sources and propagation of D

The next step is to calculate explicitly the three “new” source terms on the
right hand side of Eq. (25), using the chain rule of differentiation. In the
similar derivation in radiation transport, the only parameter in the Planck-
ian is the temperature, that varies in space and time. In hydrodynamics
M(r, c, t;n,u, RT ) depends on n,u, RT ; i.e. the local density, average velocity
and temperature in energy units, all of which vary in space and time.

We will display the individual terms. As previously, we use v − u = c

∂M

∂t
=
∂M

∂n

∂n

∂t
+ ... =

M

[
1

n

∂n

∂t
+

1

RT
(cj
∂uj
∂t

) + (−3

2
+
|c|2

2RT
)

1

RT

∂RT

∂t

]
(27)

v · ∇xM = vj
∂M

∂xj
=

M

[
vj

1

n

∂n

∂xj
+ vj

1

RT
(ci
∂ui
∂xj

) + vj(−
3

2
+
|c|2

2RT
)

1

RT

∂RT

∂xj

]
(28)

F · ∇vM = −F · ∇uM = −MF · c

RT
= −MFj

cj
RT

(29)

Collecting all the terms, we get
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∂D

∂t
+ v · ∇xD + F · ∇vD −Q(M,D)−Q(D,M)−Q(D,D) =

−M
[

1

n

∂n

∂t
+

1

RT
(cj
∂uj
∂t

) + (−3

2
+
|c|2

2RT
)

1

RT

∂RT

∂t

+vj
1

n

∂n

∂xj
+ vj

1

RT
(ci
∂ui
∂xj

) + vj(−
3

2
+
|c|2

2RT
)

1

RT

∂RT

∂xj

−Fj
cj
RT

]
(30)

The sources of the difference field have three forms of velocity dependence: M ,
cM and |c|2M . They can be positive or negative, depending on the relative
magnitudes and signs of the time- and space-derivatives. Also, the collision
terms, −Q(M,D)−Q(D,M)−Q(D,D) always relax the difference field and
they conserve the particle number, the momentum and the energy. (The sit-
uation is similar in the difference formulation of radiation transport. There
energy and momentum are conserved, but photons appear and disappear at
will, and they also don’t collide with each other.) We glossed over the added
condition, that for all velocities M + D ≥ 0. This can be a serious difficulty
for mathematical analysis as well as for real problems.

3.2 Collision operators and collisional invariants

In order to determine the evolution of the parameters ofM we have to integrate
Eq. (25) in the difference formulation, using the collision operators and the
collisional invariants. The integrals are far from trivial. This produces a new
version of the hydrodynamic equations and the deviations from them. This
is very similar to the Chapman - Enskog expansion, but we expect that it is
more transparent, non-perturbative, therefore more accurate and even more
consistent. (From our experience with radiation transport, we hope that the
orders of the expansion will not be mixed, i.e. the “closure” problem of the
Chapman - Enskog expansion may be alleviated.)

The integrals to be evaluated are of the general form, from Eq. (1)

∂

∂t

∫
ψfdv +

∂

∂xj

∫
ψvjfdv + Fj

∫
ψ
∂f

∂vj
dv

−
∫ ∂ψ

∂t
fdv −

∫ ∂ψ

∂xj
vjfdv =

∫
ψQ(f, f)dv (31)

Here f = M + D. For the conservation of particles ψ = 1, for momentum
conservation ψ = vi and for energy conservation ψ = |v|2/2.
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As v = u + c and u is constant at every point in space, we will change the
variable of integration to c.

3.2.1 The number density

First we note that the correct particle density is not the one that appears in M
in Eq. (23). In fact, some of the source terms in Eq. (30), that are proportional
to ∂n/∂t and ∂T/∂t, give a non-zero density for D.

We will now evaluate Eq. (31) with ψ = 1.

First some definitions. We decompose D into a symmetric and antisymmetric
part

Dsym = (1/2)(D(c) +D(−c)) (32)

Das = (1/2)(D(c)−D(−c)) (33)

We also note that M is symmetric. An interesting property of both M and
Dsym is that they contribute to the density and the energy, but they have no
net momentum in the comoving system, where u = 0. In the same system Das

contributes no density, no energy but does have a net momentum.

We define

nM =
∫
Mdc (34)

nD =
∫
Dsymdc (35)

By symmetry,∫
Dasdc = 0 (36)

We calculate now the individual terms∫ ∂

∂t
(M +D)dc =

∂

∂t

∫
(M +Dsym)dc =

∂

∂t
(nM + nD) (37)

∂

∂xj

∫
(uj + cj)(M +D)dc =

∂

∂xj

[
uj(nM + nD) +

∫
cjDasdc

]
(38)

This result needs some clarification: The difference density is D = Dsym+Das.
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The integral
∫
cjDsymdc = 0 by symmetry. The integral∫

cjDasdc =
∫
cjDasdcidcjdck (39)

is NOT necessarily zero.

The influence of the external force is (again in components)

Fj

∫ ∂

∂vj
(M +D)dc = Fj

∫ ∂

∂cj
(M +D)dc = 0 (40)

The integrals over M and Dsym vanish by symmetry. The integral∫ ∂

∂cj
Dasdcj = Das(+∞)−Das(−∞) = 0 (41)

The two last integrals on the left hand side of Eq. (31) are zero, because ψ = 1
is independent of x and t. As

∫
dc is a collisional invariant,∫

[−Q(M,D)−Q(D,M)−Q(D,D)]dc = 0 (42)

Our number density equation is, finally

∂

∂t
(nM + nD) +∇x ·

[
u(nM + nD) +

∫
cDasdc

]
= 0 (43)

In component notation

∂

∂t
(nM + nD) +

∂

∂xj

[
uj(nM + nD) +

∫
cjDasdc

]
= 0 (44)

3.2.2 Momentum conservation

We will now evaluate Eq. (31) with ψ = vi. Again we will display the individual
terms.

∂

∂t

∫
vi(M +D)dc =

∂

∂t
ui(nM + nD) (45)

This is the definition of the mean velocity, ui. It can be shown that it is
compatible with all our previous definitions. (In fact, in Eq. (41) we have
shown the detailed argument.)
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∂

∂xj

∫
(ui + ci)(uj + cj)(M +D)dc =

∂

∂xj

[
uiuj(nM + nD) + ui

∫
cjDasdc + uj

∫
ciDasdc +

∫
cicj(M +D)dc

]
(46)

The last integral is the stress tensor,

Pij =
∫
cicj(M +D)dc = PijM + PijD (47)

Fj

∫
vi

∂

∂vj
(M +D)dc = Fj

∫ ∂

∂vj
[vi(M +D)]dc−

Fj

∫ ∂vi
∂vj

(M +D)dc = 0− δijFj(nM + nD) (48)

The two last integrals on the left hand side of Eq. (31) are zero, because ψ = vi
is independent of x and t. This is not an obvious fact, but the definition of vi
is just a “quantity”. As a collisional invariant, the collision integral is zero:∫

vi[−Q(M,D)−Q(D,M)−Q(D,D)]dc = 0. (49)

Finally, the momentum balance equation is

∂

∂t
ui(nM + nD) +

∂

∂xj

[
uiuj(nM + nD) +

ui

∫
cjDasdc + uj

∫
ciDasdc + (PijM + PijD)

]
= Fi(nM + nD) (50)

3.2.3 Energy conservation

We will now evaluate Eq. (31) with ψ = |v|2/2 = (vivi)/2. Again we will
display the individual terms.

1

2

∂

∂t

∫
vivi(M +D)dc =

1

2

∂

∂t
uiui

∫
(M +D)dc +

∂

∂t
ui

∫
ci(M +D)dc +

1

2

∂

∂t

∫
cici(M +D)dc =

∂

∂t

[
|u|2

2
+ εint

]
(nM + nD) (51)
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Here the “internal” kinetic energy was defined as

εint(nM + nD) =
1

2

∫
cici(M +D)dc (52)

The next term in Eq. (31) is

1

2

∂

∂xj

∫
(ui + ci)(ui + ci)(uj + cj)(M +D)dc (53)

It is a sum of six terms. We will display them individually. The first one is the
transport of translational kinetic energy,

1

2

∂

∂xj
ujuiui

∫
(M +D)dc =

∂

∂xj
uj(|u|2/2)(nM + nD) (54)

The three terms with u2c are

1

2
uiui

∫
cjDasdc + uiuj

∫
ciDasdc (55)

1

2

∂

∂xj
uj

∫
cici(M +D)dc =

∂

∂xj
ujεkin(nM + nD) (56)

The next two terms are

1

2

∂

∂xj
ui

∫
cicj(M +D)dc =

1

2

∂

∂xj
uj(PjiM + PjiD) (57)

The fourth term is

1

2

∂

∂xj

∫
cicicj(M +D)dc =

1

2

∂

∂xj

∫
cicicjDasdc =

1

2

∂

∂xj
PiijD =

∂

∂xj
qj (58)

The integrals over M and Dsym are zero by symmetry. This equation also
defines the diffusive heat flux vector q.

The external force term is

Fj
1

2

∫
(ui + ci)(ui + ci)

∂

∂vj
(M +D)dc =

0− Fj
1

2
2ui

∫
ci
∂

∂cj
(M +D)dc + 0 = −Fjuj(nM + nD) (59)
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The last two terms and the collision terms integrate to zero.

So, finally the energy conservation equation is

∂

∂t

[
|u|2

2
+ εint

]
(nM + nD) +

∂

∂xj

[
uj(
|u|2

2
+ εint)(nM + nD) +

1

2
uiui

∫
cjDasdc +

uiuj

∫
ciDasdc +

1

2
PiijD

]
= Fjuj(nM + nD) (60)

The main conclusion is that these equations are very similar to the ones ob-
tained from a straightforward evaluation of a general f but they are not iden-
tical to them.

3.3 Summary

In summary, the set of three conservation equations, (44), (50), (60) have to
be solved together with the propagation equation for D, Eq. (30). One way to
perceive them is as an initial value problem. In this view we can assign an ar-
bitrary set of values for the parameters of the Maxwellian, M(r, c, t;n,u, RT ),
and follow the evolution of the parameters in space and time.

This includes the possibility to assign initially n = 0 everywhere; that reduces
our difference equations to the original Boltzmann equation and “no harm has
been done”.

4 The hydrodynamic limit: Navier - Stokes equations and beyond

As discussed in the previous subsection, in principle we can start with an
arbitrary distribution of Maxwellians in space at a given time and let their
parameters evolve according to the four equations: the propagation equation
for D, Eq. (30), the conservation equations for the number of particles, for the
momentum and for the energy, Eqs. (44), (50), (60). The last three equations
are similar to the equations of hydrodynamics, but there are no approximations
in their derivation. It is interesting to investigate their “hydrodynamic limit”,
i.e. how they relate to the compressible Navier - Stokes equations.

In hydrodynamics the equation of state plus the three Euler equations, (13),
(14), (15) govern the space and time dependence of the density of the fluid,
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of its momentum density and of its energy density (or temperature), ρ,u, RT .
In the Boltzmann equation those are the parameters of the local equilibrium
(Maxwellian) distribution function, M(r, c, t;n,u, RT ); but in the hydrody-
namic description there is no mention of the velocity distribution function of
the particles. The development of the distribution f(r,v, t) in time involves an
additional equation, the original Boltzmann equation, (2). In the traditional
Chapman - Enskog, or Hilbert expansion the distribution function, f , is some-
how assumed to be a local equilibrium distribution, M(r, c, t;n,u, RT ) but it
is not “really” so; otherwise there would be no diffusive transport and all the
richness of non - equilibrium phenomena in gases would be lost. Our modest
contribution is to make the deviation of f from a local Maxwellian explicit
and write the evolution equations for the hydrodynamic variables, n,u, RT , as
explicit functions of this deviation, D.

We now start from the other end and discuss the equations of hydrodynam-
ics. The standard way to get the compressible Navier - Stokes equations, in
Landau - Lifshitz’s notation, is to add linear viscosity and linear heat conduc-
tion (diffusion) to the Euler equations [10]. We will write those equations in
component notation.

The Navier - Stokes equation for the conservation of matter, without body
forces, is

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (61)

The momentum conservation equation is

∂ρui
∂t

+
∂

∂xj
[ρ(uiuj + Pij)] =

∂

∂xj
σ′ij (62)

Here a viscous stress (or transport) term was added. It is

σ′ij = µ(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂ul
∂xl

) + ζ(δij
∂ul
∂xl

) (63)

µ is the shear viscosity and ζ is the volume viscosity.

The equation for the energy also has two terms added,

∂

∂t
(
1

2
ρu2 + εmat) +

∂

∂xj

[
ρuj(

1

2
ρu2 + w)− uiσ′ij − κ

∂T

∂xj

]
= 0 (64)

κ is the thermal conduction. We remind the reader that εmat is the internal
energy and w is the heat function (enthalpy) of the matter.
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We can now compare these equations to the conservation equations in the
difference formulation, Eqs. (44), (50), (60).

The equations for the density Eqs. (44), (61) are very similar. The total density
is ρ = m(nM + nD). In the Boltzmann (difference) formulation there is an
additional term

∂

∂xj

∫
cjDasdc. (65)

The additional term expresses the fact that a space varying antisymmetric
difference density does contribute to the density of particles.

We now compare the momentum conservation equations Eqs. (50), (62), using
Pij = (PijM + PijD). The terms corresponding to the viscous stress tensor, in
the Boltzmann formulation, are

∂

∂xj

[
ui

∫
cjDasdc + uj

∫
ciDasdc

]
≡ − ∂

∂xj
σ′ij (66)

Again this is a pleasing result, it shows that in the linear regime the viscosity
is proportional to the velocity gradient tensor.

Finally, we compare the energy conservation equations, Eqs. (60), (64). They
are again very similar, but their differences need some discussion.

First, there is an equivalence between our notation and the notation of Landau
Lifsitz in the Navier Stokes equation, [10]: our nεkin corresponds to L-L’s εmat

in the time dependent term and to w in the heat flux term. We ignore these
differences. The equivalence is then

∂

∂xj

[
1

2
uiui

∫
cjDasdc + uiuj

∫
ciDasdc +

1

2
PiijD

]
≡ − ∂

∂xj

[
uiσ

′
ij + κ

∂T

∂xj

]
(67)

Again this is a pleasing result. Considering Eq. (66), there is an equivalence
between (1/2)PiijD and −κ(∂T/∂xj). In Eq. (58) we identified the diffusive
heat flux, qj with (1/2)PiijD, so our equivalence affirms the first order ex-
pansion of the diffusive heat flux being proportional to the negative of the
temperature gradient.

Our results show that the Navier Stokes equations of hydrodynamics are in-
deed the first approximation to the solution of the Boltzmann equation to-
gether with the conservation equations. We think that our derivation, that
has no approximations, is much more transparent than the Hilbert, or the
Chapman - Enskog expansions. In addition, it is a very simple recipe to get
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viscosity and heat conductivity to any order. Also, it shows that dilute gases
have no “hidden” properties in any regime.

5 Simple applications

In order to show the utility of our approach we calculate a transport coefficient:
the thermal conductivity. We will also comment on the limitations of our
derivation and on the lowest order non - linear modification of the thermal
conductivity.

Then we will attempt to calculate a simple boundary layer, then a shock
structure in a dilute gas...?

5.1 The thermal conductivity

From Eq. (30) it follows that the difference distribution produced by a density
and/or temperature gradient is always a P1 distribution with an axis along
the direction of the gradients of the temperature and the density. (If the two
gradients point in different directions, the distribution can be of a net P2

character.) If the gradients point in the same direction, D has a zero net
particle number, a zero net energy but a finite momentum. The latter is the
source of many of the difficulties in the solution of the equations.

In order to wet our feet, (whet our appetite?) we will investigate the following
steady state problem.

A finite slab of a dilute gas has a thermal gradient and an opposing density
gradient imposed on it. There is no external force. We can imagine that the slab
is finite in the x direction and infinite in the y, z directions. We also demand
that the pressure be constant in the slab and that it has relaxed to its steady
state, so nothing is time dependent. There is no mean velocity anywhere, but
the temperature gradient is maintained externally. The thermal conductivity
is the ratio of the diffusive thermal flux and the (negative of) temperature
gradient.

Considering the propagation equation for the difference density, Eq. (30), the
only terms left are

∂D

∂t
+ c · ∇xD −Q(M,D)−Q(D,M)−Q(D,D) =
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−M
[
cx

1

n

dn

dx
+ cx(−3

2
+
|c|2

2RT
)

1

RT

dRT

dx

]
(68)

The sources of D have a P1 type distribution in the local velocity, with its axis
in the direction of cx, the direction of the gradient. The dependences of the
sources on |c| are different for the two gradients. The density gradient source
is positive in the direction of the lower density, and negative in the direction of
the higher density for all velocities. The temperature gradient source is more
complicated: it is as expected at high velocities, |c|2 > 3RT , but it is reversed
at low velocities. The angular distribution is still P1, but the positive lobe is
in the direction of the higher temperature at low velocities. This behavior is
“reasonable”, considering that a Maxwell distribution with a given number
of particles is broader at higher temperatures and has a lower peak at lower
velocities.

The number and energy conservation equations, (44), (60) are satisfied iden-
tically. The momentum conservation equation, (50), reduces to

∂

∂x
(PijM + PijD) =

1

2

∂

∂x

∫
cxcx(M +D)dc = 0 (69)

All the terms that contain u are zero, so is the time derivative. As D is
antisymmetric in cx, the second term in the integral is also zero.

The calculation is straightforward. (For completeness, it will be presented
below.) The result is

1

n

dn

dx
= − 1

RT

dRT

dx
(70)

This shows that the Boltzmann equation has the equation of state of an ideal
gas, and that in our example the pressure is constant, so for an ideal gas
nRT = p = const.

Equation (68) then simplifies to

∂D

∂t
+ c · ∇xD −Q(M,D)−Q(D,M)−Q(D,D) =

−nM1cx(−5

2
+
|c|2

2RT
)

1

RT

dRT

dxj
, (71)

where we defined the unit Maxwell distribution

M1(c) =
M(c)

n
=

1

(2πRT )3/2
exp(− |c|

2

2RT
) (72)
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Eq. (71) is the same as used by Kremer [9] (Eq. 34), and Landau [8] (Eq.
10.1). In particular, 5/2 is the constant pressure heat capacity, cp.

The right hand side of Eq. (71) is the source of D, while the left hand side is
the propagation of D and its relaxation by collisions. It is the collision integral
that traditionally causes all the difficulties. We will approximate the collisions
by a relaxation that conserves the particle number, the momentum and the
energy.

In order to calculate the diffusive heat flux, we have to calculate the difference
field D. As a preliminary consideration, we consider a point in space, x and
a difference particle emitted with velocity c at a time t. We will denote this
difference field by D(x, t; c,Ω). 1 In our case, where the distribution of D has
an angular dependence of P1 (with its axis in the x direction) it is advanta-
geous to consider pairs of particles, that are emitted in opposite directions
with velocities c, −c. Their total particle number and energy are zero, but
their net momentum is non-zero. When the pair is emitted, the Maxwellian
source recoils, in order to conserve momentum. As they propagate they re-
lax into the local Maxwellian and they deposit their momentum into it. By
choosing the relation (70) between dn/dx and dRT/dx we guarantee that the
momentum of the emission (and the absorption), integrated over the velocity
is zero everywhere, so the momentum conservation equation is satisfied.

The collision term in the Boltzmann equation, in the most general case, is
very difficult to calculate [6]. Here we will use a very simple version of the
collision term: it is a relaxation using a mean free path, d along the direction
of propagation of D(c). (A better assumption would be that d is a function
of velocity d(|c|). 2 ) Such an approximation ignores the angular distribution
of the collision kernel, it implicitly assumes that a collision “absorbs”, or
“thermalizes” the incident particle. As discussed above, in our particular case
such relaxation satisfies all the conservation equations.

We will make one further approximation, that the gradients are so small that
in the sources we can approximate the Maxwelian in Eq. (71) with a constant
temperature and density. We will remark on the non - linear extension of our
calculation, when this approximation is not taken.

We start with a simple calculation. Assume that D propagates in a straight
line, without attenuation. Let us concentrate on a point x in space and on a
time t. The emission ofD in a volume ∆V over a time ∆t is [dD(x, t)/dt]∆V∆t,
where we denoted the right hand side of Eq. (71) by [dD(x, t)/dt]. When this

1 This notation is slightly different from the notation for M ≡M(r, c, t;n,u, RT ).
2 Note that the BGK relaxation, that uses a single relaxation time corresponds to
a cross section that is proportional to 1/c and it is not conservative.
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source propagates to x = 0, t = 0 it gives a partial difference density

D(0, 0; c,Ω) =
dD(x, t)

dt
∆V∆t

1

4πr2
(73)

We denoted r2 = |x2|, for convenience. The source propagates in straight
line, with velocity c > 0 in the direction of Ω. There are constraints on the
emission volume and the emission time determined by c. The emission volume
is a spherical shell of width ∆r and area r2dΩ. As the particles propagate with
velocity c, ∆r = c∆t. For simplicity we did not write out the time constraint
explicitly, but will take it into account in the following.

In order to get the total difference density, we have to integrate the sources
over the full volume, taking into account the constraints. the integrals are

D(0, 0; c,Ω) =
∫ dD(r,−r/c)

dt

1

4πr2
r2
dr

c
dΩ (74)

In our simple approximation the source decays exponentially with its path pro-
portionally to nσ and σ is a cross section. This modifies the previous equation
to

D(0, 0; c,Ω) =
∫ dD(r,−r/c)

dt

1

4πc
exp(−

∞∫
0

nσdr)dΩ (75)

In our problem we approximate n as independent of space, Then that integral
can be carried out and the result is

D(0, 0; c,Ω) =
dD(r,−r/c)

dt

1

nσc
(76)

We note that in our simple example dD(r,−r/c)/dt and n are independent of
time and the integral

∫
dΩ/4π = 1.

From our derivation it is clear how to proceed when the source has time and
space dependence. (The integrals get much nastier.) Our relaxation Ansatz
does preserve the number of particles, the momentum and the energy for the
derivative sources, but in reality the collision integrals are much more difficult.
We do not know how to improve on this point.

We should repeat the additional limitations of our approach and some jus-
tifications for them. We essentially approximated only the Q(M,D) collision
term and neglected Q(D,M) +Q(D,D). If Q(M,D) ≈ ε, so is Q(D,M). The
justification to neglect this term is that D is of P1 symmetry and if we consider

21



the pair of particles with opposite velocities, their total particle number and
energy are zero and the momentum they impart to the Maxwellian, if inte-
grated over all velocities in the same direction, is also zero. So the net result
should be a distortion of the Maxwellian by the collisions and that should
relax quite rapidly. As discussed above, Q(D,D) ≈ ε2. We also did not take
into account that at all velocities M +D ≥ 0. In our example it follows from
the smallness of dRT/dx.

Putting together Eqs. (71) and (76) gives

D(0, 0; c,Ω) = − 1

nσc

n

RT
M1cx(−5

2
+
|c|2

2RT
)
∂RT

∂x
=

− 1

σRT
M1 cos θ(−5

2
+
|c|2

2RT
)
∂RT

∂x
(77)

The diffusive kinetic energy flux is the same as q in Eq. (9). We will write it
in polar coordinates in c space

Fke = q =

∞∫
0

c2dc

1∫
−1

d cos θ

[
D(0; c,Ω)

c2

2
c cos θ

]
(78)

The integral is straightforward. (For completeness, it will be presented below.)
The result is

Fke = −4

3

1

σ

(
RT

2π

)1/2
∂RT

∂x
(79)

5.1.1 Some integrals

We show now some details of the two integrals in Eqs. (69) and (78).

The momentum balance equation reduces to

1

2

∂

∂x

∫
cxcxMdc =

1

2

∫
cxcx

∂M

∂x
dc = 0 (80)

From Eq. (28)

∂M

∂x
= M

[
1

n

∂n

∂x
+ (−3

2
+
|c|2

2RT
)

1

RT

∂RT

∂x

]
(81)
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It is easiest to evaluate the integrals in components. As an example, one term
is

∫
(cx)2

|c|2

2RT

n

(2πRT )3/2
exp(− |c|

2

2RT
)dc =

∫
(cx)2

c2x + c2y + c2z
2RT

n

(2πRT )3/2
exp(−

c2x + c2y + c2z
2RT

)dcxdcydcz =

5

2
nRT (82)

The last line was obtained using standard integral tables.

The heat flux integral is evaluated using polar coordinates, as in Eq. (78)

∞∫
0

c2dc

1∫
−1

d cos θ

[
D(0; c,Ω)

c2

2
c cos θ

]
=

− 1

σRT

∂RT

∂x

∞∫
0

c2dc

1∫
−1

d cos θ

[
M1 cos θ(−5

2
+
|c|2

2RT
)
c2

2
c cos θ

]
=

− 1

σRT

∂RT

∂x

2

3

1

(2πRT )3/2

∞∫
0

c2exp(− c2

2RT
)(−5

2
+

c2

2RT
)
c2

2
cdc (83)

The angular integral is elementary and the integral over c is again found in
integral tables. The final result is shown in Eq. (79).

6 Gas mixtures

TO BE CONTINUED...?

THEN DO THE JUMP IN N AND RT.

DEAR READERS,

THIS IS AN OPEN-ENDED NOTE. WE WELCOME ANY AND ALL PEO-
PLE WHO WANT TO CONTRIBUTE AND COLLABORATE WITH US.
THE LIST OF AUTHORS CAN BE EXPANDED, ANY WILLING CON-
TRIBUTOR CAN BE ADDED TO IT.
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A MORE IMPORTANT REQUEST IS TO TRY TO THINK ABOUT THE
IMPLICATIONS AND EXTENSIONS OF THE WORK. ONE EXAMPLE
IS THE DERIVATION OF OTHER TRANSPORT COEFFICIENTS AND
FLUCTUATION - DISSIPATION THEOREMS.

References

[1] Szoke, A., Brooks, E. D. The Transport Equation in Optically Thick Media
(2005) Journal of Quantitative Spectroscopy and Radiative Transfer 91, 95-110

[2] Williams, S. A., Bell, J. B., Garcia, A. L. (2008) Algorithm Refinement for
Fluctuating Hydrodynamics. SIAM Multiscale Modeling and Simulation, 6, 1256-
1280

[3] Donev, A., Bell, J. B., Garcia, A. L., Alder, B. J. A Hybrid Particle- Continuum
Method for Hydrodynamics of Complex Fluids (2010) Multiscale Model. Simul.,
8(3), 871911

[4] (ELM) Esposito, R., Lebowitz, J. L., Marra, R. On the Derivation of
Hydrodynamics from the Boltzmann Equation (1999) Phys. of Fluids 11, 2354
- 2366

[5] (LIB) Liboff, R. L. (1998) Kinetic Theory (2nd edition) Wiley

[6] Villani, C. A Review of Mathematical Topics in Collisional Kinetic Theory (2002)
Handbook of Mathematical Fluid Dynamics (Vol. 1)

[7] (LEV) Bardos, C., Golse, F., Levermore, D. Fluid Dynamic Limits of Kinetic
Equations. I. Formal Derivations (1991) J. Stat. Phys. 61, 323 - 343

[8] Lifshitz, E. M., Pitaevskii, R. N. Physical Kinetics (Landau and Lifshitz, Course
of Theoretical Physics Volume 10) (1981)

[9] The Methods of Chapman - Enskog and Grad and Applications NATO-EN-AVT-
194)

[10] Landau, L. D., Lifshitz, E. M. Fluid Machanics (Landau and Lifshitz, Course
of Theoretical Physics Volume 6) (1959)

24


